- About
- Strategic Plan
- Structure
- Governance
- Scientific divisions
- ACRF Cancer Biology and Stem Cells
- ACRF Chemical Biology
- Advanced Technology and Biology
- Bioinformatics
- Blood Cells and Blood Cancer
- Clinical Translation
- Epigenetics and Development
- Immunology
- Infectious Diseases and Immune Defence
- Inflammation
- Personalised Oncology
- Population Health and Immunity
- Structural Biology
- Ubiquitin Signalling
- Laboratory operations
- Funding
- Annual reports
- Human research ethics
- Scientific integrity
- Institute life
- Career opportunities
- Business Development
- Collaborators
- Suppliers
- Publications repository
- Awards
- Discoveries
- Centenary 2015
- History
- Contact us
- Research
- Diseases
- Cancer
- Development and ageing
- Immune health and infection
- Research fields
- Research technologies
- Research centres
- People
- Alistair Brown
- Anne-Laure Puaux
- Assoc Prof Joanna Groom
- Associate Profesor Ian Majewski
- Associate Professor Aaron Jex
- Associate Professor Andrew Webb
- Associate Professor Chris Tonkin
- Associate Professor Diana Hansen
- Associate Professor Edwin Hawkins
- Associate Professor Ethan Goddard-Borger
- Associate Professor Gemma Kelly
- Associate Professor Grant Dewson
- Associate Professor Isabelle Lucet
- Associate Professor James Vince
- Associate Professor Jason Tye-Din
- Associate Professor Jeanne Tie
- Associate Professor Jeff Babon
- Associate Professor Joan Heath
- Associate Professor John Wentworth
- Associate Professor Justin Boddey
- Associate Professor Kate Sutherland
- Associate Professor Kelly Rogers
- Associate Professor Marie-Liesse Asselin-Labat
- Associate Professor Melissa Call
- Associate Professor Misty Jenkins
- Associate Professor Nawaf Yassi
- Associate Professor Oliver Sieber
- Associate Professor Rachel Wong
- Associate Professor Rhys Allan
- Associate Professor Rosie Watson
- Associate Professor Ruth Kluck
- Associate Professor Shalin Naik
- Associate Professor Sumitra Ananda
- Associate Professor Tim Thomas
- Associate Professor Tracy Putoczki
- Chela Niall
- Deborah Carr
- Dr Alisa Glukhova
- Dr Anna Coussens
- Dr Ashley Ng
- Dr Belinda Phipson
- Dr Ben Tran
- Dr Bernhard Lechtenberg
- Dr Brad Sleebs
- Dr Drew Berry
- Dr Gwo Yaw Ho
- Dr Hamish King
- Dr Hui-Li Wong
- Dr Jacqui Gulbis
- Dr Jim Whittle
- Dr Lucy Gately
- Dr Margaret Lee
- Dr Mary Ann Anderson
- Dr Maryam Rashidi
- Dr Matthew Call
- Dr Nadia Davidson
- Dr Nadia Kershaw
- Dr Philippe Bouillet
- Dr Rebecca Feltham
- Dr Rory Bowden
- Dr Samir Taoudi
- Dr Sarah Best
- Dr Saskia Freytag
- Dr Shabih Shakeel
- Dr Sheau Wen Lok
- Dr Stephin Vervoort
- Dr Yunshun Chen
- Guillaume Lessene
- Helene Martin
- Joh Kirby
- Kaye Wycherley
- Keely Bumsted O'Brien
- Mr Simon Monard
- Mr Steve Droste
- Ms Carolyn MacDonald
- Professor Alan Cowman
- Professor Andreas Strasser
- Professor Andrew Roberts
- Professor Anne Voss
- Professor Clare Scott
- Professor Daniel Gray
- Professor David Huang
- Professor David Komander
- Professor David Vaux
- Professor Doug Hilton
- Professor Geoff Lindeman
- Professor Gordon Smyth
- Professor Ian Wicks
- Professor Ivo Mueller
- Professor James McCarthy
- Professor James Murphy
- Professor Jane Visvader
- Professor Jerry Adams
- Professor John Silke
- Professor Ken Shortman
- Professor Leanne Robinson
- Professor Leonard C Harrison
- Professor Lynn Corcoran
- Professor Marc Pellegrini
- Professor Marco Herold
- Professor Marnie Blewitt
- Professor Matthew Ritchie
- Professor Melanie Bahlo
- Professor Melissa Davis
- Professor Mike Lawrence
- Professor Nicos Nicola
- Professor Peter Colman
- Professor Peter Czabotar
- Professor Peter Gibbs
- Professor Phil Hodgkin
- Professor Sandra Nicholson
- Professor Sant-Rayn Pasricha
- Professor Seth Masters
- Professor Stephen Nutt
- Professor Suzanne Cory
- Professor Terry Speed
- Professor Tony Papenfuss
- Professor Wai-Hong Tham
- Professor Warren Alexander
- Diseases
- Education
- PhD
- Honours
- Masters
- Clinician-scientist training
- Undergraduate
- Student research projects
- A multi-pronged approach to targeting myeloproliferative neoplasms
- A new paradigm of machine learning-based structural variant detection
- A whole lot of junk or a treasure trove of discovery?
- Advanced imaging interrogation of pathogen induced NETosis
- Analysing the metabolic interactions in brain cancer
- Atopic dermatitis causes and treatments
- Building a cell history recorder using synthetic biology for longitudinal patient monitoring
- Characterisation of malaria parasite proteins exported into infected liver cells
- Deciphering the heterogeneity of the tissue microenvironment by multiplexed 3D imaging
- Defining the mechanisms of thymic involution and regeneration
- Delineating the molecular and cellular origins of liver cancer to identify therapeutic targets
- Developing computational methods for spatial transcriptomics data
- Developing drugs to block malaria transmission
- Developing models for prevention of hereditary ovarian cancer
- Developing statistical frameworks for analysing next generation sequencing data
- Development and mechanism of action of novel antimalarials
- Development of novel RNA sequencing protocols for gene expression analysis
- Discoveries in red blood cell production and function
- Discovery and targeting of novel regulators of transcription
- Dissecting host cell invasion by the diarrhoeal pathogen Cryptosporidium
- Dissecting mechanisms of cytokine signalling
- Doublecortin-like kinases, drug targets in cancer and neurological disorders
- Epigenetic biomarkers of tuberculosis infection
- Exploiting cell death pathways in regulatory T cells for cancer immunotherapy
- Exploiting the cell death pathway to fight Schistosomiasis
- Finding treatments for chromatin disorders of intellectual disability
- Functional epigenomics in human B cells
- How do nutrition interventions and interruption of malaria infection influence development of immunity in sub-Saharan African children?
- Human lung protective immunity to tuberculosis
- Improving therapy in glioblastoma multiforme by activating complimentary programmed cell death pathways
- Innovating novel diagnostic tools for infectious disease control
- Integrative analysis of single cell RNAseq and ATAC-seq data
- Interaction with Toxoplasma parasites and the brain
- Interactions between tumour cells and their microenvironment in non-small cell lung cancer
- Investigation of a novel cell death protein
- Malaria: going bananas for sex
- Mapping spatial variation in gene and transcript expression across tissues
- Multi-modal computational investigation of single-cell communication in metastatic cancer
- Nanoparticle delivery of antibody mRNA into cells to treat liver diseases
- Naturally acquired immune response to malaria parasites
- Organoid-based discovery of new drug combinations for bowel cancer
- Organoid-based precision medicine approaches for oral cancer
- Removal of tissue contaminations from RNA-seq data
- Reversing antimalarial resistance in human malaria parasites
- Role of glycosylation in malaria parasite infection of liver cells, red blood cells and mosquitoes
- Screening for novel genetic causes of primary immunodeficiency
- Statistical analysis of single-cell multi-omics data
- Structural and functional analysis of epigenetic multi-protein complexes in genome regulation
- Structure, dynamics and impact of extra-chromosomal DNA in cancer
- Targeted deletion of disease-causing T cells
- Targeting cell death pathways in tissue Tregs to treat inflammatory diseases
- The cellular and molecular calculation of life and death in lymphocyte regulation
- The role of hypoxia in cell death and inflammation
- The role of ribosylation in co-ordinating cell death and inflammation
- Understanding Plasmodium falciparum invasion of red blood cells
- Understanding cellular-cross talk within a tumour microenvironment
- Understanding the genetics of neutrophil maturation
- Understanding the roles of E3 ubiquitin ligases in health and disease
- Unveiling the heterogeneity of small cell lung cancer
- Using combination immunotherapy to tackle heterogeneous brain tumours
- Using intravital microscopy for immunotherapy against brain tumours
- Using nanobodies to understand malaria invasion and transmission
- Using structural biology to understand programmed cell death
- School resources
- Frequently asked questions
- Student profiles
- Abebe Fola
- Andrew Baldi
- Anna Gabrielyan
- Ashley Weir
- Bridget Dorizzi
- Casey Ah-Cann
- Catia Pierotti
- Emma Nolan
- Huon Wong
- Jasmine Rou
- Jing Deng
- Joy Liu
- Kaiseal Sarson-Lawrence
- Komal Patel
- Krishneel Prasa
- Lilly Backshell
- Malvika Kharbanda
- Megan Kent
- Naomi Jones
- Pailene Lim
- Rebecca Delconte
- Roberto Bonelli
- Rune Larsen
- Runyu Mao
- Sarah Garner
- Simona Seizova
- Sophie Collard
- Wayne Cawthorne
- Wil Lehmann
- Yanxiang Meng
- Zhong Yan Gan
- Miles Horton
- Alexandra Gurzau
- Student achievements
- Student association
- Learning Hub
- News
- Donate
- Online donation
- Ways to support
- Support outcomes
- Supporter stories
- Rotarians against breast cancer
- A partnership to improve treatments for cancer patients
- 20 years of cancer research support from the Helpman family
- A generous gift from a cancer survivor
- A generous vision for impactful medical research
- A gift to support excellence in Australian medical research
- An enduring friendship
- Anonymous donor helps bridge the 'valley of death'
- Philanthropy through the power of sisterhood
- Renewed support for HIV eradication project
- Searching for solutions to muscular dystrophy
- Supporting research into better treatments for colon cancer
- Taking a single cell focus with the DROP-seq
- WEHI.TV
Parkinson's protein blueprint could help fast-track new treatments
23 December 2021
accumulating at the mitochondrial membrane
(magenta). PINK1 recruits Parkin to help
repair damaged mitochondria.
Researchers have solved a decade-long mystery about a critical protein linked to Parkinson’s disease that could help to fast-track treatments for the incurable disease.
The research, published in Nature, has for the first time produced a ‘live action’ view of the protein, called PINK1, in exquisite molecular detail.
The discovery explains how the protein is activated in the cell, where it is responsible for initiating the removal and replacement of damaged mitochondria. When the protein is not working correctly, it can starve brain cells of energy, causing them to malfunction and – in the long term – die, as happens to dopamine-producing cells in Parkinson’s disease.
The discovery is the culmination of a project spanning eight years and provides the first detailed blueprint for the discovery and development of therapeutic agents that could help to slow or even stop the progression of Parkinson’s disease.
Led by PhD student Mr Zhong Yan Gan and Professor David Komander, the multidisciplinary team at WEHI used innovative cryo-electron microscopy (cryo-EM) facilities and research to make the discovery.
At a glance
- WEHI researchers have, for the first time, visualised the entire process that leads to the activation of PINK1 – a protein directly linked to Parkinson’s disease.
- The team has been able to analyse each process that occurs from when PINK1 is initially made, to how defects in the protein lead to Parkinson’s disease.
- The enhanced understanding of the molecular basis of Parkinson’s disease created by the researchers has the potential to underpin new treatments.
Turning off the switch
Parkinson’s disease is a progressive neurodegenerative disease caused by the death of dopamine-producing cells in the brain. More than 10 million people worldwide are living with Parkinson’s disease, including more than 80,000 Australians.
Currently there are no approved drugs that can slow or stop the progression of Parkinson’s disease, with available therapies only able to treat and alleviate symptoms.
PhD student and first author Zhong Yan Gan said the research provided an unprecedented view of a protein called PINK1, known to play a critical role in early onset Parkinson’s disease.
“Many papers from laboratories around the world – including ours – have captured snapshots of the PINK1 protein. However, the differences in these snapshots has in some ways fuelled confusion about the protein and its structure,” Mr Gan said.
“What we have been able to do is to take a series of snapshots of the protein ourselves and stitch them together to make a ‘live action’ movie that reveals the entire activation process of PINK1. We were then able to reconcile why all these previous structural images were different – they were snapshots taken at different moments in time as this protein was activated to perform its function in the cell.”
PINK1 protects the cell by tagging damaged mitochondria – the energy powerhouse of the cell – to be demolished and recycled. When there are defects in PINK1 or other components of the pathway, it starves the cell of energy by preventing the recycling and replacement of damaged mitochondria with healthy ones.
“One of the critical discoveries we made was that this protein forms a dimer – or pair – that is essential for switching on or activating the protein to perform its function. There are tens of thousands of papers on this protein family, but to visualise how this protein comes together and changes in the process of activation, is really a world-first,” Mr Gan said.
Drug discovery potential
Professor Komander said his lab’s discovery paved the way for developing therapeutic agents that ‘switch on’ PINK1 to treat Parkinson’s disease.
“There are currently no disease-modifying drugs available for Parkinson’s disease – that is, there are no drugs that can slow progression of the disease or halt its development,” Professor Komander said.
Malfunctions in PINK1, or other parts of the pathway that control mitochondrial repair, is thought to be a key feature in certain cases of Parkinson’s disease. However, this information is particularly relevant for a subset of young people who develop Parkinson’s in their 20s, 30s and 40s due to hereditary mutations in PINK1.
Professor Komander said the discovery would lead to new opportunities to exploit this pathway for Parkinson’s disease therapies.
“Biotech and pharmaceutical companies are already looking at this protein and this pathway as a therapeutic target for Parkinson’s disease, but they have been flying a bit blind. I think they’ll be really excited to see this incredible new structural information that our team has been able to produce using cryo-EM. I’m really proud of this work and where it may lead,” he said.
David Komander (L-R) led the research discovery.
World-class facilities
Dr Alisa Glukhova said the discovery was made possible thanks to the new custom-built cryo-EM facility jointly funded by WEHI and Bio21 Institute and WEHI’s recruitment of structural biologists with expertise in using the technology.
“This is the first time that we have used cryo-EM at WEHI to solve the structure of small proteins such as PINK1,” Dr Glukhova said.
“This revolutionary technique has only been available in the past five years, and this work was made possible because WEHI has invested in this facility and the expertise needed to make the best use of the technology. It is a great example of how innovative technologies can really drive forward research and lead to transformative discoveries.”
Parkinson’s disease research at WEHI is supported by the Australian National Health and Medical Research Council, The Michael J. Fox Foundation, Shake-It-Up Australia, a CSL Centenary Fellowship, Bodhi Foundation, Australian Government Research Training Program Scholarship and the Victorian Government, and benefits from generous philanthropic support, including Leon Davis AO and Annette Davis.
The cryo-EM work for this study was performed at the Bio21 Advanced Microscopy Facility and supported by the WEHI Information Technology Services and the WEHI Research Computing Platform.
WEHI authors: Zhong Yan Gan, Sylvie Callegari, Simon Cobbold, Thomas Cotton, Michael Mlodzianoski, Niall Geoghegan, Kelly Rogers, Andrew Leis, Grant Dewson, Alisa Glukhova and David Komander.
Media enquiries
M: +61 475 751 811
E: communityrelations@wehi.edu.au
Super Content:
Our researchers have revealed how a key protein protects against the death of neurons that occurs in Parkinson's disease.
This animation from WEHI.TV illustrates the role of ubiquitin in controlling the fate and activity of other proteins and its involvement in Parkinson’s disease.
Professor David Komander provides an introduction to the ubiquitin code and its potential for tackling diseases such as Parkinson's disease.
Learn about our research into the causes of neurodegenerative disorders, and our work to develop new treatments for these conditions.
Want to be informed of our most exciting discoveries? Subscribe to our quarterly newsletter, Illuminate.