- About
- Strategic Plan
- Structure
- Governance
- Scientific divisions
- ACRF Cancer Biology and Stem Cells
- ACRF Chemical Biology
- Advanced Technology and Biology
- Bioinformatics
- Blood Cells and Blood Cancer
- Clinical Translation
- Epigenetics and Development
- Immunology
- Infectious Diseases and Immune Defence
- Inflammation
- Personalised Oncology
- Population Health and Immunity
- Structural Biology
- Ubiquitin Signalling
- Laboratory operations
- Funding
- Annual reports
- Human research ethics
- Scientific integrity
- Institute life
- Career opportunities
- Business Development
- Business Development Office
- Partnering opportunities
- A complete cure for HBV
- A stable efficacious Toxoplasma vaccine
- Activating SMCHD1 to treat FSHD
- Improving vision outcomes in retinal detachment
- Intercepting inflammation with RIPK2 inhibitors
- Novel inhibitors for the treatment of lupus
- Novel malaria vaccine
- Novel mucolytics for the treatment of respiratory diseases
- Precision epigenetics silencing SMCHD1 to treat Prader Willi Syndrome
- Rethinking CD52 a therapy for autoimmune disease
- Targeting minor class splicing
- Partnerships and collaborations
- Royalties distribution
- Start-up companies
- Collaborators
- Publications repository
- Awards
- Discoveries
- Centenary 2015
- History
- Contact us
- Research
- Diseases
- Cancer
- Development and ageing
- Immune health and infection
- Research fields
- Research technologies
- People
- Anne-Laure Puaux
- Associate Profesor Ian Majewski
- Associate Professor Aaron Jex
- Associate Professor Alyssa Barry
- Associate Professor Andrew Webb
- Associate Professor Chris Tonkin
- Associate Professor Daniel Gray
- Associate Professor Diana Hansen
- Associate Professor Edwin Hawkins
- Associate Professor Emma Josefsson
- Associate Professor Ethan Goddard-Borger
- Associate Professor Grant Dewson
- Associate Professor Isabelle Lucet
- Associate Professor James Murphy
- Associate Professor James Vince
- Associate Professor Jason Tye-Din
- Associate Professor Jeanne Tie
- Associate Professor Jeff Babon
- Associate Professor Joan Heath
- Associate Professor Justin Boddey
- Associate Professor Kate Sutherland
- Associate Professor Leanne Robinson
- Associate Professor Marco Herold Marco Herold
- Associate Professor Marie-Liesse Asselin-Labat
- Associate Professor Matthew Ritchie
- Associate Professor Melissa Davis
- Associate Professor Misty Jenkins
- Associate Professor Nawaf Yassi
- Associate Professor Oliver Sieber
- Associate Professor Peter Czabotar
- Associate Professor Rachel Wong
- Associate Professor Rhys Allan
- Associate Professor Rosie Watson
- Associate Professor Ruth Kluck
- Associate Professor Sandra Nicholson
- Associate Professor Sant-Rayn Pasricha
- Associate Professor Seth Masters
- Associate Professor Sumitra Ananda
- Associate Professor Tim Thomas
- Associate Professor Wai-Hong Tham
- Associate Professor Wei Shi
- Catherine Parker
- Chela Niall
- Deborah Carr
- Dr Alisa Glukhova
- Dr Anna Coussens
- Dr Ashley Ng
- Dr Ben Tran
- Dr Bernhard Lechtenberg
- Dr Brad Sleebs
- Dr Drew Berry
- Dr Gemma Kelly
- Dr Gwo Yaw Ho
- Dr Hui-Li Wong
- Dr Jacqui Gulbis
- Dr Joanna Groom
- Dr John Wentworth
- Dr Kelly Rogers
- Dr Lucy Gately
- Dr Margaret Lee
- Dr Mary Ann Anderson
- Dr Maryam Rashidi
- Dr Matthew Call
- Dr Melissa Call
- Dr Philippe Bouillet
- Dr Rebecca Feltham
- Dr Rory Bowden
- Dr Samir Taoudi
- Dr Shabih Shakeel
- Dr Shalin Naik
- Dr Sheau Wen Lok
- Dr Simon Chatfield
- Dr Tracy Putoczki
- Guillaume Lessene
- Helene Martin
- Joh Kirby
- Kaye Wycherley
- Keely Bumsted O'Brien
- Mr Simon Monard
- Mr Steve Droste
- Ms Carolyn MacDonald
- Professor Alan Cowman
- Professor Andreas Strasser
- Professor Andrew Lew
- Professor Andrew Roberts
- Professor Anne Voss
- Professor Clare Scott
- Professor David Huang
- Professor David Komander
- Professor David Vaux
- Professor Doug Hilton
- Professor Gabrielle Belz
- Professor Geoff Lindeman
- Professor Gordon Smyth
- Professor Ian Wicks
- Professor Ivo Mueller
- Professor James McCarthy
- Professor Jane Visvader
- Professor Jerry Adams
- Professor John Silke
- Professor Ken Shortman
- Professor Leonard C Harrison
- Professor Lynn Corcoran
- Professor Marc Pellegrini
- Professor Marnie Blewitt
- Professor Melanie Bahlo
- Professor Mike Lawrence
- Professor Nicos Nicola
- Professor Peter Colman
- Professor Peter Gibbs
- Professor Phil Hodgkin
- Professor Stephen Nutt
- Professor Suzanne Cory
- Professor Terry Speed
- Professor Tony Burgess
- Professor Tony Papenfuss
- Professor Warren Alexander
- Diseases
- Education
- PhD
- Honours
- Masters
- Undergraduate
- Student research projects
- A new regulator of stemness to create dendritic cell factories for immunotherapy
- Advanced methods for genomic rearrangement detection
- Control of cytokine signaling by SOCS1
- Defining the protein modifications associated with respiratory disease
- Delineating the pathways driving cancer development and therapy resistance
- Developing a new drug that targets plasmacytoid dendritic cells for the treatment of lupus
- Development and mechanism of action of novel antimalarials
- Development of a novel particle-based malaria vaccine
- Development of tau-specific therapeutic and diagnostic antibodies
- Discovering novel therapies for major human pathogens
- Dissecting host cell invasion by the diarrhoeal pathogen Cryptosporidium
- Epigenetic biomarkers of tuberculosis infection
- Essential role of glycobiology in malaria parasites
- Evolution of haematopoiesis in vertebrates
- Human lung protective immunity to tuberculosis
- Identifying novel treatment options for ovarian carcinosarcoma
- Interaction with Toxoplasma parasites and the brain
- Interactions between tumour cells and their microenvironment in non-small cell lung cancer
- Investigating the role of mutant p53 in cancer
- Microbiome strain-level analysis using long read sequencing
- Minimising rheumatic adverse events of checkpoint inhibitor cancer therapy
- Modelling spatial and demographic heterogeneity of malaria transmission risk
- Naturally acquired immune response to malaria parasites
- Predicting the effect of non-coding structural variants in cancer
- Structural basis of catenin-independent Wnt signalling
- Structure and biology of proteins essential for Toxoplasma parasite invasion
- T lymphocytes: how memories are made
- TICKER: A cell history recorder for longitudinal patient monitoring
- Targeting host pathways to develop new broad-spectrum antiviral drugs
- Targeting post-translational modifications to disrupting the function of secreted proteins
- Targeting the epigenome to rewire pro-allergic T cells
- Targeting the immune microenvironment to treat KRAS-mutant adenocarcinoma
- The E3 ubiquitin ligase Parkin and mitophagy in Parkinson’s disease
- The molecular controls on dendritic cell development
- Understanding malaria infection dynamics
- Understanding the genetics of neutrophil maturation
- Understanding the neuroimmune regulation of innate immunity
- Understanding the proteins that regulate programmed cell death at the molecular level
- Using cutting-edge single cell tools to understand the origins of cancer
- When healthy cells turn bad: how immune responses can transition to lymphoma
- School resources
- Frequently asked questions
- Student profiles
- Abebe Fola
- Andrew Baldi
- Anna Gabrielyan
- Bridget Dorizzi
- Casey Ah-Cann
- Catia Pierotti
- Emma Nolan
- Huon Wong
- Jing Deng
- Joy Liu
- Kaiseal Sarson-Lawrence
- Komal Patel
- Lilly Backshell
- Megan Kent
- Naomi Jones
- Rebecca Delconte
- Roberto Bonelli
- Rune Larsen
- Runyu Mao
- Sarah Garner
- Simona Seizova
- Wayne Cawthorne
- Wil Lehmann
- Miles Horton
- Alexandra Gurzau
- Student achievements
- Student association
- News
- Donate
- Online donation
- Ways to support
- Support outcomes
- Supporter stories
- Rotarians against breast cancer
- A partnership to improve treatments for cancer patients
- 20 years of cancer research support from the Helpman family
- A generous gift from a cancer survivor
- A gift to support excellence in Australian medical research
- An enduring friendship
- Anonymous donor helps bridge the 'valley of death'
- Renewed support for HIV eradication project
- Searching for solutions to muscular dystrophy
- Supporting research into better treatments for colon cancer
- Taking a single cell focus with the DROP-seq
- WEHI.TV
Researchers capture ‘key’ to deadly malaria infection
13 December 2018
have visualised a key molecular structure that could help to design a
vaccine against the deadliest malaria parasite, Plasmodium falciparum.
An international team led by Institute researchers has visualised the unique molecular ‘key’ used by the world’s deadliest malaria parasite, Plasmodium falciparum, to enter and infect human blood cells.
This breakthrough provides scientists with the missing information required to design a vaccine that combats the prevalent parasite.
The findings represent a significant milestone because the malaria parasite kills more than 500,000 people each year and an effective vaccine for protection against it does not yet exist.
Published today in Nature, the study was led by Professor Alan Cowman and Dr Wilson Wong at the Walter and Eliza Hall Institute, along with collaborators at the Howard Hughes Medical Institute’s Janelia Research Campus (US) and the company ExpreS2ion Biotechnologies in Denmark.
At a glance
- The unique molecular ‘key’ used by the world's deadliest malaria parasite to enter human blood cells has been captured for the first time.
- Cryo-electron microscopy enabled the researches to produce a detailed 3D 'blueprint' of the proteins that come together to form this special key.
- The information can now be used to block the parasite from entering blood cells which means it will be unable to cause malaria infection in the body.
The ‘key’ to infection
The first-ever 3D image of the parasite’s key to causing infection was achieved using Nobel Prize-winning cryo-EM (cryo-electron microscopy) technology.
The ‘key’ is a complex of three parasite proteins – called Rh5, CyRPA and Ripr – which work together to unlock and enter the cell, Professor Cowman said.
“This complex is fundamental to the malaria parasite’s ability to enter cells and cause infection. With this new information we can now target the parasite in a much better way because we understand how it functions to infect the blood.
"Capturing the first ever image of the protein complex – revealing with astounding clarity exactly what it looks like – was a ‘Eureka’ moment in the field of malaria research,” he said.
These findings are significant because the entry of the malaria parasite into human red blood cells enables rapid growth, multiplication and spread; driving serious symptoms such as fever, chills, malaise, diarrhoea and vomiting. Understanding how parasites enter cells opens up opportunities for blocking the parasite from infecting humans and stopping the cycle of disease and transmission.
Seen for the first time
The Melbourne-based team led by Professor Cowman prepared samples for the study by genetically engineering parasite DNA and extracting the proteins Rh5 and CyRPA. The third protein, Ripr, was produced by the biotechnology company ExpreS2ion.
Dr Wong said the 3D image of the ‘Rh5/CyRPA/Ripr’ complex was obtained using the world’s most advanced cryo-electron microscope, the Titan Krios, at the Howard Hughes Medical Institute’s Janelia Research Campus.
“Together with our colleagues in the US we obtained hundreds of thousands of images of the complex from different angles.
"With the help of high-powered computing we were then able to assemble these together, revealing the first-ever high resolution, 3D image of the Rh5/CyRPA/Ripr complex – the key to the parasite’s ability to cause infection," Dr Wong said.
‘Blueprint’ makes vaccine possible
Professor Cowman said the new structure provided researchers with critical information for designing an effective vaccine against the Plasmodium falciparum parasite.
“We now have the information required to design a vaccine that gives the immune system precise instructions about how to stop the malaria parasite.
"If we can block the protein complex from forming, Plasmodium falciparum will never have the key it needs to infect human blood cells,” he said.
“Making this discovery has been rewarding because it brings us an important step closer to hopefully one day achieving the ultimate goal of eradicating malaria.”
The work builds on foundational studies led by Walter and Eliza Hall Institute researchers, to understand the role of Rh5, CyRPA and Ripr in malaria infection.
The research was supported by the Australian National Health and Medical Research Council and the Victorian Government.
Media enquiries
Super Content:
This WEHI.TV biomedical animation reconstructs the infection of a human child via mosquito bite, through invasion of cellular tissues including the liver and blood.
Visualisation of the parasite infection inside a pregnant female mosquito.
The institute's malaria research team is homing in on a new target for malaria treatment
The first three-dimensional image capturing a critical malaria ‘conductor’ protein could lead to the development of a new class of antimalarial drugs.
Our biomedical animation team explains the discoveries made by scientists through 3D animation.