- About
- Strategic Plan
- Structure
- Governance
- Scientific divisions
- ACRF Chemical Biology
- ACRF Stem Cells and Cancer
- Bioinformatics
- Cancer and Haematology
- Cell Signalling and Cell Death
- Development and Cancer
- Immunology
- Infection and Immunity
- Inflammation
- Molecular Genetics of Cancer
- Molecular Immunology
- Molecular Medicine
- Population Health and Immunity
- Structural Biology
- Systems Biology and Personalised Medicine
- Laboratory operations
- Funding
- Annual reports
- Human research ethics
- Scientific integrity
- Institute life
- Career opportunities
- Business Development
- Initiatives
- Partnering opportunities
- Opportunities in platform technologies
- Domain-specific BET bromodomain inhibitors for cancer
- Targeting BFL-1 for the treatment of cancer
- Jointly targeting IGF-1R and IR in cancer
- Soluble CD52 as a therapeutic for inflammatory disease
- TBK inhibitors to treat rheumatoid arthritis
- A novel therapeutic to treat malaria
- Development of a subunit vaccine against malaria
- Eliminating infectious disease via BCL-2 inhibition
- A novel approach to treating Hepatitis B
- Start-up companies
- Collaborators
- Publications repository
- Awards
- Discoveries
- Centenary 2015
- History
- Contact us
- Research
- Diseases
- Research fields
- Bioinformatics
- Cancer biology
- Cell death
- Cell signalling
- Clinical translation
- Computational biology
- Drug discovery
- Epigenetics
- Flow cytometry
- Genomics
- Haematology
- Imaging
- Immunology
- Infection
- Inflammation
- Medicinal chemistry
- Personalised medicine
- Proteomics
- Stem cells
- Structural biology
- Systems biology
- Vaccine development
- People
- Associate Professor Aaron Jex
- Associate Professor Alyssa Barry
- Associate Professor Anne Voss
- Associate Professor Chris Tonkin
- Associate Professor Daniel Gray
- Associate Professor Edwin Hawkins
- Associate Professor Grant Dewson
- Associate Professor James Murphy
- Associate Professor Jeff Babon
- Associate Professor Joan Heath
- Associate Professor Justin Boddey
- Associate Professor Marco Herold Marco Herold
- Associate Professor Marnie Blewitt
- Associate Professor Mike Lawrence
- Associate Professor Nicholas Huntington
- Associate Professor Oliver Sieber
- Associate Professor Sandra Nicholson
- Associate Professor Seth Masters
- Associate Professor Tim Thomas
- Associate Professor Wai-Hong Tham
- Associate Professor Wei Shi
- Catherine Parker
- Dr Andrew Webb
- Dr Ashley Ng
- Dr Ben Tran
- Dr Bob Anderson
- Dr Catheryn O'Brien
- Dr Diana Hansen
- Dr Drew Berry
- Dr Emma Josefsson
- Dr Ethan Goddard-Borger
- Dr Gary Pitt
- Dr Gwo Yaw Ho
- Dr Hélène Jousset Sabroux
- Dr Ian Majewski
- Dr Ian Street
- Dr Jacqui Gulbis
- Dr James Vince
- Dr Jason Tye-Din
- Dr Joanna Groom
- Dr John Wentworth
- Dr Julie Mercer
- Dr Kate Sutherland
- Dr Kelly Rogers
- Dr Ken Pang
- Dr Leanne Robinson
- Dr Leigh Coultas
- Dr Marie-Liesse Asselin-Labat
- Dr Mary Ann Anderson
- Dr Maryam Rashidi
- Dr Matthew Call
- Dr Matthew Ritchie
- Dr Melissa Call
- Dr Melissa Davis
- Dr Michael Low
- Dr Misty Jenkins
- Dr Peter Czabotar
- Dr Philippe Bouillet
- Dr Priscilla Auyeung
- Dr Rhys Allan
- Dr Ruth Kluck
- Dr Samar Ojaimi
- Dr Samir Taoudi
- Dr Sant-Rayn Pasricha
- Dr Shalin Naik
- Dr Simon Chatfield
- Dr Stephen Wilcox
- Dr Tracy Putoczki
- Guillaume Lessene
- Helene Martin
- Isabelle Lucet
- Keely Bumsted-O'Brien
- Mr Ian Coulson
- Mr Joel Chibert
- Mr Simon Monard
- Mr Stan Balbata
- Mr Steve Droste
- Ms Carolyn MacDonald
- Ms Samantha Ludolf
- Ms Susanne Williamson
- Ms Wendy Hertan
- Professor Alan Cowman
- Professor Andreas Strasser
- Professor Andrew Lew
- Professor Andrew Roberts
- Professor Axel Kallies
- Professor Clare Scott
- Professor David Huang
- Professor David Vaux
- Professor Doug Hilton
- Professor Gabrielle Belz
- Professor Geoff Lindeman
- Professor Gordon Smyth
- Professor Ian Wicks
- Professor Ivo Mueller
- Professor Jane Visvader
- Professor Jerry Adams
- Professor John Silke
- Professor Ken Shortman
- Professor Leonard C Harrison
- Professor Li Wu
- Professor Lynn Corcoran
- Professor Marc Pellegrini
- Professor Melanie Bahlo
- Professor Nicos Nicola
- Professor Peter Colman
- Professor Peter Gibbs
- Professor Phil Hodgkin
- Professor Stephen Nutt
- Professor Suzanne Cory
- Professor Terry Speed
- Professor Tony Burgess
- Professor Tony Papenfuss
- Professor Warren Alexander
- Education
- PhD
- Honours
- Masters
- Undergraduate
- Student research projects
- Analysis and reporting of whole genome sequencing data from malaria parasites
- Analysis of long read data from the minION, with application to malaria
- Analysis of short tandem repeat markers from whole genome sequencing
- Antibody longevity following Plasmodium vivax infections
- Antigenic diversity of malaria parasites: towards more effective malaria vaccines
- Biogenesis of eosinophil granules
- Biological sequence analysis and genomic variant discovery
- Biology of the unique intra-mitochondrial bacterium Midichloria mitochondrii
- Characterising regulatory T cells in coeliac disease
- Chemical probing to identify effectors of necroptotic cell death
- Computational systems biology of Wnt/cell adhesion signalling in colon cancer
- Controlling apoptotic cell death in cancer
- Deciphering mechanisms of thrombocytopenia (low platelet count) in blood cancers
- Defining molecular signatures of drug resistance and sensitivity
- Designing immunotherapy for brain cancer
- Developing non-invasive methods to monitor kidney transplant rejection
- Discovery and analysis of autoimmune regulators
- Discovery of novel drug combinations for the treatment of bowel cancer
- Drug targets and compounds that block growth of malaria parasites
- Dying to survive: mechanistic insights into human bowel cancer development
- Dynamic discovery of innate immunity through imaging and genomics
- Dysregulation of TNF expression in inflammatory diseases
- Effects of nutrition on immunity and infection in Asia and Africa
- Elucidation of long range methylation structure using nanopore sequencing
- Eosinophil activation
- Eosinophil death
- Eosinophil heterogeneity
- Eosinophil maturation
- Epigenetic regulation of systemic iron homeostasis
- Epigenetic regulation of the immune system
- Explosive cell death and human disease
- Export of malaria virulence proteins during liver infection
- Function of proteins involved in invasion of erythrocytes by malaria parasites
- Functional genomics to improve therapeutic options for rare cancers
- Giardia duodenalis phosphoproteome and protein kinase network
- Harnessing the immune system to target small cell lung cancer
- Home renovations: understanding how Toxoplasma redecorates its host cell
- How do malaria parasites traverse human cells and invade hepatocytes?
- How does the malaria parasite prevent the host liver cell from dying?
- Human monoclonal antibodies against malaria infection
- IL5 signalling in asthma
- Identification of genes critical for the control of chronic infections
- Identification of malaria parasite entry receptors
- Identifying new cell death and inflammatory pathways
- Identifying proteome signatures of high grade glioma for precision medicine
- Insight into the cytotoxic T cell immune synapse
- Investigating apoptosis control in tumour blood vessels
- Investigating brain abnormalities with single cell ‘omics
- Investigating mechanisms of cell death and survival using zebrafish
- Investigating the mechanics of platelet formation
- Investigating the molecular regulation of neovascular eye disease
- Let me in! How Toxoplasma invades human cells
- Long-read sequencing for transcriptome and epigenome analysis
- Machine learning analysis of mutagenesis datasets
- Macro-evolution in cancer
- Mapping human gene mutations affecting anti-malarial drug efficacy
- Mechanism and modulation of K+ channels and membrane transporters
- Mechanisms of disease relapse in acute lymphoblastic leukaemia
- Microbiome analysis using long read nanopore sequencing
- Molecular mechanism underpinning dendritic cell ontogeny and functions
- Molecular mechanisms of innate immune signalling
- Next-generation mucolytics to treat lung diseases
- No sex please, we’re inhibited: searching for drugs to prevent malaria transmission
- Novel biomarkers and mechanisms of antimalarial drug resistance
- Novel real-time, quantitative imaging approaches for studying malaria
- Novel regulators of JAK-STAT signalling in development and disease
- Novel tool for malaria surveillance and intervention
- Optimising serological markers of recent exposure to Plasmodium vivax
- Quantitation of human T cell responses in primary immunodeficiency
- Reconciling intracellular imaging and metastatic behaviour in cancer cells
- Reconstructing the immune response: from molecules to cells to systems
- Role of protein glycosylation in malaria virulence
- Statistical bioinformatic analyses of RNA-seq and ChIP-seq data
- Strategies mammalian cells use to survive without growth factors
- Structural and biochemical studies on Notch signal transduction
- Structural and functional analysis of malaria invasion
- Structural biology and binding studies of BCL-2 family proteins
- Structural studies of invasion processes during malaria infection
- Structural studies of the Plasmodium and Toxoplasma tight-junction complex
- Target identification of potent antimalarial agents
- The role of glycosylation in malaria vaccine design
- Towards a molecular description of plasma cell diversity
- Tracking the spread of malaria in the Asia Pacific region
- Transmembrane control of type I cytokine receptor activation
- Uncovering the roles of long non-coding RNAs in human bowel cancer
- Understanding resistance to apoptotic cell death
- Understanding the common through study of the rare
- Understanding the development of humoral immunity to malaria
- Unravelling cellular circuitry with single cell RNA-seq and CRISPR
- Unravelling the molecular architecture of killer T cells in disease
- Why is interleukin-11 elevated in acute myeloid leukaemia?
- School resources
- Frequently asked questions
- Student profiles
- Student achievements
- Student association
- News
- Donate
- Online donation
- Ways to support
- Support outcomes
- Supporter stories
- Rotarians against breast cancer
- A partnership to improve treatments for cancer patients
- 20 years of cancer research support from the Helpman family
- A generous gift from a cancer survivor
- A gift to support excellence in Australian medical research
- An enduring friendship
- Anonymous donor helps bridge the 'valley of death'
- Renewed support for HIV eradication project
- Searching for solutions to muscular dystrophy
- Supporting research into better treatments for colon cancer
- Taking a single cell focus with the DROP-seq
- WEHI.TV
Leanne Robinson-Projects
Researcher:
Relapsing P. vivax infections in Papua New Guinean children
Plasmodium vivax has the ability to cause relapsing infections from long-lasting liver stages called hypnozoites. By studying the effect of removing long lasting liver-stages with primaquine treatment on the subsequent risk of P. vivax infection and illness, we have demonstrated that relapses cause around 80 per cent of P. vivax infections in PNG children and are important in sustaining transmission.
Data from these cohort studies is also being used to develop mathematical models of P. vivax relapses to predict the effectiveness of various intervention strategies against P. vivax and study within host, clonal dynamics.
Impact of malaria control on the epidemiology and transmission of P. falciparum and P. vivax malaria in Papua New Guinea
The intensification of the PNG malaria control program over the past 10 years is significantly reducing the burden of malaria and changing the complex relationships between parasites, human hosts and mosquito vectors.
Through a series of repeated community cross-sectional surveys, longitudinal child cohort studies, entomological surveys and hospital-based surveillance in two endemic areas of the country, we are using sensitive molecular diagnostics to monitor the impact of these changes on the age-specific burden of malaria, the natural acquisition of immunity, behavior of vectors and risk factors for infection and transmission, so as to be able to inform ongoing and future control efforts.
The dynamics of malaria transmission stages in host and vector
This study aims to determine the risk factors for Plasmodium spp. gametocyte carriage and study the temporal associations between the presence and complexity of asexual and sexual Plasmodium spp. infections. In parallel, the study will investigate the relationship between the presence and density of gametocyte in a blood samples and its infectivity to local vectors by conducting a series of standard mosquito membrane feeding assays.
Knowledge of the gametocyte carriers in a population, when gametocytes are most prevalent, and what are the determinants of infectivity to the mosquito vector, is essential for improving the implementation of current control tools and informing the development of novel interventions aimed at the interruption of local transmission.
Natural acquisition of immunity to P. falciparum and P. vivax in pregnancy, infancy and childhood
Our understanding of antibody and cellular immune responses that underpin the development of natural immunity to malaria is still evolving. Utilising samples collected during longitudinal cohort studies of pregnant women, infants and children in Madang and Maprik areas of PNG, we are investigating the dynamics of antibody and cellular immune responses, their acquisition, suppression, boosting and maintenance.
In addition, we are investigating trans-placental transfer of antibodies to infectious diseases and the role of pre-natal malaria exposure on immune responses and all-cause morbidity during infancy.