- About
- Strategic Plan
- Structure
- Governance
- Scientific divisions
- ACRF Chemical Biology
- ACRF Stem Cells and Cancer
- Bioinformatics
- Cancer and Haematology
- Cell Signalling and Cell Death
- Development and Cancer
- Immunology
- Infection and Immunity
- Inflammation
- Molecular Genetics of Cancer
- Molecular Immunology
- Molecular Medicine
- Population Health and Immunity
- Structural Biology
- Systems Biology and Personalised Medicine
- Laboratory operations
- Funding
- Annual reports
- Human research ethics
- Scientific integrity
- Institute life
- Career opportunities
- Business Development
- Partnering opportunities
- Opportunities in platform technologies
- A complete cure for HBV
- A stable efficacious Toxoplasma vaccine
- Activating SMCHD1 to treat FSHD
- Fut8 Sugar coating immuno oncology
- Intercepting inflammation with RIPK2 inhibitors
- Novel checkpoints NK cells emerge as key players in IO
- Precision epigenetics silencing SMCHD1 to treat Prader Willi Syndrome
- Rethinking CD52 a therapy for autoimmune disease
- Targeting plasmacytoid dendritic cells for systemic lupus erythematosus
- Treating Epstein-Barr virus associated malignancies
- Royalties distribution
- Start-up companies
- Partnering opportunities
- Collaborators
- Publications repository
- Awards
- Discoveries
- Centenary 2015
- History
- Contact us
- Research
- Diseases
- Research fields
- Bioinformatics
- Cancer biology
- Cell death
- Cell signalling
- Clinical translation
- Computational biology
- Drug discovery
- Epigenetics
- Flow cytometry
- Genomics
- Haematology
- Imaging
- Immunology
- Infection
- Inflammation
- Medicinal chemistry
- Personalised medicine
- Proteomics
- Stem cells
- Structural biology
- Systems biology
- Vaccine development
- People
- Anne-Laure Puaux
- Associate Professor Aaron Jex
- Associate Professor Alyssa Barry
- Associate Professor Andrew Webb
- Associate Professor Anne Voss
- Associate Professor Chris Tonkin
- Associate Professor Daniel Gray
- Associate Professor Edwin Hawkins
- Associate Professor Grant Dewson
- Associate Professor Isabelle Lucet
- Associate Professor James Murphy
- Associate Professor Jeanne Tie
- Associate Professor Jeff Babon
- Associate Professor Joan Heath
- Associate Professor Justin Boddey
- Associate Professor Marco Herold Marco Herold
- Associate Professor Marnie Blewitt
- Associate Professor Matthew Ritchie
- Associate Professor Mike Lawrence
- Associate Professor Nicholas Huntington
- Associate Professor Oliver Sieber
- Associate Professor Rachel Wong
- Associate Professor Sandra Nicholson
- Associate Professor Seth Masters
- Associate Professor Sumitra Ananda
- Associate Professor Tim Thomas
- Associate Professor Wai-Hong Tham
- Associate Professor Wei Shi
- Catherine Parker
- Dr Anna Coussens
- Dr Ashley Ng
- Dr Ben Tran
- Dr Bob Anderson
- Dr Brad Sleebs
- Dr David Komander
- Dr Diana Hansen
- Dr Drew Berry
- Dr Emma Josefsson
- Dr Ethan Goddard-Borger
- Dr Gary Pitt
- Dr Gwo Yaw Ho
- Dr Hui-Li Wong
- Dr Hélène Jousset Sabroux
- Dr Ian Majewski
- Dr Ian Street
- Dr Jacqui Gulbis
- Dr James Vince
- Dr Jason Tye-Din
- Dr Joanna Groom
- Dr John Wentworth
- Dr Julie Mercer
- Dr Kate Sutherland
- Dr Kelly Rogers
- Dr Ken Pang
- Dr Leanne Robinson
- Dr Leigh Coultas
- Dr Lucy Gately
- Dr Margaret Lee
- Dr Marie-Liesse Asselin-Labat
- Dr Mary Ann Anderson
- Dr Maryam Rashidi
- Dr Matthew Call
- Dr Melissa Call
- Dr Melissa Davis
- Dr Michael Low
- Dr Misty Jenkins
- Dr Peter Czabotar
- Dr Philippe Bouillet
- Dr Priscilla Auyeung
- Dr Rhys Allan
- Dr Ruth Kluck
- Dr Samar Ojaimi
- Dr Samir Taoudi
- Dr Sant-Rayn Pasricha
- Dr Shalin Naik
- Dr Sheau Wen Lok
- Dr Simon Chatfield
- Dr Stephen Wilcox
- Dr Tracy Putoczki
- Guillaume Lessene
- Helene Martin
- Keely Bumsted O'Brien
- Mr Joel Chibert
- Mr Simon Monard
- Mr Stan Balbata
- Mr Steve Droste
- Ms Carolyn MacDonald
- Ms Samantha Ludolf
- Ms Wendy Hertan
- Professor Alan Cowman
- Professor Andreas Strasser
- Professor Andrew Lew
- Professor Andrew Roberts
- Professor Clare Scott
- Professor David Huang
- Professor David Vaux
- Professor Doug Hilton
- Professor Gabrielle Belz
- Professor Geoff Lindeman
- Professor Gordon Smyth
- Professor Ian Wicks
- Professor Ivo Mueller
- Professor Jane Visvader
- Professor Jerry Adams
- Professor John Silke
- Professor Ken Shortman
- Professor Leonard C Harrison
- Professor Li Wu
- Professor Lynn Corcoran
- Professor Marc Pellegrini
- Professor Melanie Bahlo
- Professor Nicos Nicola
- Professor Peter Colman
- Professor Peter Gibbs
- Professor Phil Hodgkin
- Professor Stephen Nutt
- Professor Suzanne Cory
- Professor Terry Speed
- Professor Tony Burgess
- Professor Tony Papenfuss
- Professor Warren Alexander
- Education
- PhD
- Honours
- Masters
- Undergraduate
- Student research projects
- 3D and 4D imaging of thymic T cell differentiation
- Activating https://www.wehi.edu.au/node/add/individual-student-research-page#Parkin to treat Parkinson’s disease
- Activation, regulation, and biological roles of E3 ubiquitin ligases
- Bioinformatics methods for detecting and making sense of somatic genomic rearrangements
- Characterising regulatory T cells in coeliac disease
- Computational melanoma genomics
- Deep profiling of blood cancers during targeted therapy
- Defining the role of necroptosis in platelet production and function
- Determining the migration signals leading to protective immune responses
- Developing mucolytics to treat chronic respiratory diseases
- Developing new tools to visualise necroptotic cell death
- Development of live-cell, automated microscopy techniques for studying malaria
- Development of tools to inform malaria vaccine design
- Discovering new genetic causes of primary antibody deficiencies
- Discovery of novel drug combinations for the treatment of bowel cancer
- Dissecting the induction and integration of T cell migration cues
- Drug targets and compounds that block growth of malaria parasites
- Effects of nutrition on immunity and infection in Asia and Africa
- Eosinophil and neutrophil heterogeneity
- Eosinophil maturation
- Epigenetic regulation of systemic iron homeostasis
- Functional differences between young and old platelets
- Generation of cytokine antagonists
- Genetic dissection of mechanisms of Plasmodium invasion
- Genomic characterisation of epigenetic regulators involved in X inactivation
- High resolution 3-dimensional imaging to characterise metastatic cancers
- High-resolution imaging of host cell invasion by the malaria parasite
- Home renovations: understanding how Toxoplasma redecorates its host cell
- How the epigenetic regulator SMCHD1 works and how to target it to treat disease
- Human monoclonal antibodies against malaria infection
- Identification of malaria parasite entry receptors
- Identification of new therapeutic opportunities for pancreatic cancer
- Identifying disease-causing haplotypes with hidden Markov models
- Interleukin-11 in gastrointestinal bacterial infections
- Investigating mechanisms of cell death and survival using zebrafish
- Investigating new paths to selective modulation of potassium channels
- Let me in! How Toxoplasma invades human cells
- Long-read sequencing for transcriptome and epigenome analysis
- Macro-evolution in cancer
- Mapping DNA repair networks in cancer
- Mapping how multiple malaria episodes are related
- Modelling gene regulatory systems
- Modulation of immune responses by immunosuppressive chemokines
- Molecular basis for inherited Parkinson’s disease mechanism of PINK1
- Mucus at the molecular level
- Novel cell death and inflammatory modulators in lupus
- Plasmodium vivax host-parasite interactions: impact on immunity
- Predicting drug response in cancer
- Programming T cells to defend against infections
- Reconstructing the immune response: from molecules to cells to systems
- Regulation of cytokine signalling
- Screening for regulators of jumping genes
- Target identification of potent antimalarial agents
- Targeting the immune system in cancer
- The role of interleukin-11 in acute myeloid leukaemia
- Transmembrane control of type I cytokine receptor activation
- Uncovering the roles of long non-coding RNAs in human bowel cancer
- Understanding retinal eye diseases with retinal transcriptomic data analysis
- Understanding the role of stromal cells in pancreatic cancer growth
- Unravelling the tumour suppressor network in models of lung cancer
- Utilising pre-clinical models to discover novel therapies for tuberculosis
- Zombieland: evolution of a dead enzyme that kills cells by necroptosis
- School resources
- Frequently asked questions
- Student profiles
- Abebe Fola
- Casey Ah-Cann
- Catia Pierotti
- Charlotte Slade
- Daniel Cameron
- Emma Nolan
- Jason Brouwer
- Joy Liu
- Lucille Rankin
- Rebecca Delconte
- Roberto Bonelli
- Rune Larsen
- Sarah Garner
- Simona Seizova
- Michael Low
- Sofonias Tessema
- Santini Subramaniam
- Miles Horton
- Alexandra Gurzau
- Tamara Marcus
- Nicholas Chandler
- Student achievements
- Student association
- News
- Donate
- Online donation
- Ways to support
- Support outcomes
- Supporter stories
- Rotarians against breast cancer
- A partnership to improve treatments for cancer patients
- 20 years of cancer research support from the Helpman family
- A generous gift from a cancer survivor
- A gift to support excellence in Australian medical research
- An enduring friendship
- Anonymous donor helps bridge the 'valley of death'
- Renewed support for HIV eradication project
- Searching for solutions to muscular dystrophy
- Supporting research into better treatments for colon cancer
- Taking a single cell focus with the DROP-seq
- WEHI.TV
Myeloproliferative disorders

Myeloproliferative disorders are serious conditions in which excessive numbers of blood cells are produced. This can interfere with the normal functions of blood.
Myeloproliferative disorders are caused by over-active signalling in blood-producing cells. Our research is focused on understanding this process to develop new treatments for people with these diseases.
Our research into myeloproliferative disorders
Our researchers aim to improve how myeloproliferative disorders are treated. To do this they are:
-
Revealing how normal blood cell production is controlled, and the defects that lead to myeloproliferative disorders.
-
Understanding the signalling proteins that contribute to myeloproliferative disorders, aiding the development of new treatments.
What are myeloproliferative disorders?
Myeloproliferative disorders are cancer-like diseases in which too many blood cells are produced in the bone marrow. This hinders the normal production of blood cells. The excess blood cells can also disrupt the function of the blood.
There are many types of myeloproliferative disorder, involving different cell types. Common types are:
Disease |
Problem |
Essential thrombocythaemia |
Too many platelets produced, which can lead to excessive blood clotting. |
Polycythemia vera |
Too many red blood cells, which can thicken the blood. |
Primary myelofibrosis |
Too much fibrous tissue produced in the bone marrow, preventing normal blood production. |
Myeloproliferative disorders differ from leukaemia in the major type of cell being produced. In myeloproliferative disorders, the bone marrow produces excessive numbers of mature blood cells function normally, but are present in greater-than-normal numbers. In leukaemia, the cells tend to be immature. Sometimes myeloproliferative disorders can progress to acute leukaemia.
What causes myeloproliferative disorders?
Specific genetic changes in blood cells have been pinpointed as the cause of many myeloproliferative disorders. These genetic changes cause over-active signalling in bone marrow cells, resulting in uncontrolled production of blood cells.
A common genetic defect frequently associated with myeloproliferative disorders is:
- JAK2V617F, an altered version of the gene for the JAK2 signalling protein. This is often found in essential thrombocythaemia, polycythemia vera and primary myelofibrosis.
How are myeloproliferative disorders treated?
Myeloproliferative disorders are severe and potentially fatal. These diseases can progress slowly for many years. However, some can progress to acute leukaemia, a more aggressive disease.
Most myeloproliferative disorders cannot be cured. Treatments can relieve the symptoms and slow the disease’s progress.
Targeted therapies are showing promise for treating myeloproliferative disorders. Specific inhibitors of JAK2 are effective in treating some people with myeloproliferative disorders.
The Leukaemia Foundation provides advice and support for people with myeloproliferative disorders.
Institute researchers are not able to provide specific medical advice specific to individuals. If you have cancer and wish to find out more information about clinical trials, please visit the Australian Cancer Trials or the Australian New Zealand Clinical Trials Registry, or consult your medical specialist.
Researchers:
Super Content:
Our researchers have discovered how an essential blood-making hormone stimulates platelet production
Structural biologist Dr Jeff Babon was the 2012 Burnet Prize recipient.