- About
- Strategic Plan
- Structure
- Governance
- Scientific divisions
- ACRF Cancer Biology and Stem Cells
- ACRF Chemical Biology
- Advanced Technology and Biology
- Bioinformatics
- Blood Cells and Blood Cancer
- Clinical Translation
- Epigenetics and Development
- Immunology
- Infectious Diseases and Immune Defence
- Inflammation
- Personalised Oncology
- Population Health and Immunity
- Structural Biology
- Ubiquitin Signalling
- Laboratory operations
- Funding
- Annual reports
- Human research ethics
- Scientific integrity
- Institute life
- Career opportunities
- Business Development
- Collaborators
- Suppliers
- Publications repository
- Awards
- Discoveries
- Centenary 2015
- History
- Contact us
- Research
- Diseases
- Cancer
- Development and ageing
- Immune health and infection
- Research fields
- Research technologies
- Research centres
- People
- Alistair Brown
- Anne-Laure Puaux
- Assoc Prof Joanna Groom
- Associate Profesor Ian Majewski
- Associate Professor Aaron Jex
- Associate Professor Andrew Webb
- Associate Professor Chris Tonkin
- Associate Professor Diana Hansen
- Associate Professor Edwin Hawkins
- Associate Professor Ethan Goddard-Borger
- Associate Professor Gemma Kelly
- Associate Professor Grant Dewson
- Associate Professor Isabelle Lucet
- Associate Professor James Vince
- Associate Professor Jason Tye-Din
- Associate Professor Jeanne Tie
- Associate Professor Jeff Babon
- Associate Professor Joan Heath
- Associate Professor John Wentworth
- Associate Professor Justin Boddey
- Associate Professor Kate Sutherland
- Associate Professor Kelly Rogers
- Associate Professor Marie-Liesse Asselin-Labat
- Associate Professor Melissa Call
- Associate Professor Misty Jenkins
- Associate Professor Nawaf Yassi
- Associate Professor Oliver Sieber
- Associate Professor Rachel Wong
- Associate Professor Rhys Allan
- Associate Professor Rosie Watson
- Associate Professor Ruth Kluck
- Associate Professor Shalin Naik
- Associate Professor Sumitra Ananda
- Associate Professor Tim Thomas
- Associate Professor Tracy Putoczki
- Chela Niall
- Deborah Carr
- Dr Alisa Glukhova
- Dr Anna Coussens
- Dr Ashley Ng
- Dr Belinda Phipson
- Dr Ben Tran
- Dr Bernhard Lechtenberg
- Dr Brad Sleebs
- Dr Drew Berry
- Dr Gwo Yaw Ho
- Dr Hamish King
- Dr Hui-Li Wong
- Dr Jacqui Gulbis
- Dr Jim Whittle
- Dr Lucy Gately
- Dr Margaret Lee
- Dr Mary Ann Anderson
- Dr Maryam Rashidi
- Dr Matthew Call
- Dr Nadia Davidson
- Dr Nadia Kershaw
- Dr Philippe Bouillet
- Dr Rebecca Feltham
- Dr Rory Bowden
- Dr Samir Taoudi
- Dr Sarah Best
- Dr Saskia Freytag
- Dr Shabih Shakeel
- Dr Sheau Wen Lok
- Dr Stephin Vervoort
- Dr Yunshun Chen
- Guillaume Lessene
- Helene Martin
- Joh Kirby
- Kaye Wycherley
- Keely Bumsted O'Brien
- Mr Simon Monard
- Mr Steve Droste
- Ms Carolyn MacDonald
- Professor Alan Cowman
- Professor Andreas Strasser
- Professor Andrew Roberts
- Professor Anne Voss
- Professor Clare Scott
- Professor Daniel Gray
- Professor David Huang
- Professor David Komander
- Professor David Vaux
- Professor Doug Hilton
- Professor Geoff Lindeman
- Professor Gordon Smyth
- Professor Ian Wicks
- Professor Ivo Mueller
- Professor James McCarthy
- Professor James Murphy
- Professor Jane Visvader
- Professor Jerry Adams
- Professor John Silke
- Professor Ken Shortman
- Professor Leanne Robinson
- Professor Leonard C Harrison
- Professor Lynn Corcoran
- Professor Marc Pellegrini
- Professor Marco Herold
- Professor Marnie Blewitt
- Professor Matthew Ritchie
- Professor Melanie Bahlo
- Professor Melissa Davis
- Professor Mike Lawrence
- Professor Nicos Nicola
- Professor Peter Colman
- Professor Peter Czabotar
- Professor Peter Gibbs
- Professor Phil Hodgkin
- Professor Sandra Nicholson
- Professor Sant-Rayn Pasricha
- Professor Seth Masters
- Professor Stephen Nutt
- Professor Suzanne Cory
- Professor Terry Speed
- Professor Tony Papenfuss
- Professor Wai-Hong Tham
- Professor Warren Alexander
- Diseases
- Education
- PhD
- Honours
- Masters
- Clinician-scientist training
- Undergraduate
- Student research projects
- A multi-pronged approach to targeting myeloproliferative neoplasms
- A new paradigm of machine learning-based structural variant detection
- A whole lot of junk or a treasure trove of discovery?
- Advanced imaging interrogation of pathogen induced NETosis
- Analysing the metabolic interactions in brain cancer
- Atopic dermatitis causes and treatments
- Building a cell history recorder using synthetic biology for longitudinal patient monitoring
- Characterisation of malaria parasite proteins exported into infected liver cells
- Deciphering the heterogeneity of the tissue microenvironment by multiplexed 3D imaging
- Defining the mechanisms of thymic involution and regeneration
- Delineating the molecular and cellular origins of liver cancer to identify therapeutic targets
- Developing computational methods for spatial transcriptomics data
- Developing drugs to block malaria transmission
- Developing models for prevention of hereditary ovarian cancer
- Developing statistical frameworks for analysing next generation sequencing data
- Development and mechanism of action of novel antimalarials
- Development of novel RNA sequencing protocols for gene expression analysis
- Discoveries in red blood cell production and function
- Discovery and targeting of novel regulators of transcription
- Dissecting host cell invasion by the diarrhoeal pathogen Cryptosporidium
- Dissecting mechanisms of cytokine signalling
- Doublecortin-like kinases, drug targets in cancer and neurological disorders
- Epigenetic biomarkers of tuberculosis infection
- Exploiting cell death pathways in regulatory T cells for cancer immunotherapy
- Exploiting the cell death pathway to fight Schistosomiasis
- Finding treatments for chromatin disorders of intellectual disability
- Functional epigenomics in human B cells
- How do nutrition interventions and interruption of malaria infection influence development of immunity in sub-Saharan African children?
- Human lung protective immunity to tuberculosis
- Improving therapy in glioblastoma multiforme by activating complimentary programmed cell death pathways
- Innovating novel diagnostic tools for infectious disease control
- Integrative analysis of single cell RNAseq and ATAC-seq data
- Interaction with Toxoplasma parasites and the brain
- Interactions between tumour cells and their microenvironment in non-small cell lung cancer
- Investigation of a novel cell death protein
- Malaria: going bananas for sex
- Mapping spatial variation in gene and transcript expression across tissues
- Multi-modal computational investigation of single-cell communication in metastatic cancer
- Nanoparticle delivery of antibody mRNA into cells to treat liver diseases
- Naturally acquired immune response to malaria parasites
- Organoid-based discovery of new drug combinations for bowel cancer
- Organoid-based precision medicine approaches for oral cancer
- Removal of tissue contaminations from RNA-seq data
- Reversing antimalarial resistance in human malaria parasites
- Role of glycosylation in malaria parasite infection of liver cells, red blood cells and mosquitoes
- Screening for novel genetic causes of primary immunodeficiency
- Statistical analysis of single-cell multi-omics data
- Structural and functional analysis of epigenetic multi-protein complexes in genome regulation
- Structure, dynamics and impact of extra-chromosomal DNA in cancer
- Targeted deletion of disease-causing T cells
- Targeting cell death pathways in tissue Tregs to treat inflammatory diseases
- The cellular and molecular calculation of life and death in lymphocyte regulation
- The role of hypoxia in cell death and inflammation
- The role of ribosylation in co-ordinating cell death and inflammation
- Understanding Plasmodium falciparum invasion of red blood cells
- Understanding cellular-cross talk within a tumour microenvironment
- Understanding the genetics of neutrophil maturation
- Understanding the roles of E3 ubiquitin ligases in health and disease
- Unveiling the heterogeneity of small cell lung cancer
- Using combination immunotherapy to tackle heterogeneous brain tumours
- Using intravital microscopy for immunotherapy against brain tumours
- Using nanobodies to understand malaria invasion and transmission
- Using structural biology to understand programmed cell death
- School resources
- Frequently asked questions
- Student profiles
- Abebe Fola
- Andrew Baldi
- Anna Gabrielyan
- Ashley Weir
- Bridget Dorizzi
- Casey Ah-Cann
- Catia Pierotti
- Emma Nolan
- Huon Wong
- Jasmine Rou
- Jing Deng
- Joy Liu
- Kaiseal Sarson-Lawrence
- Komal Patel
- Krishneel Prasa
- Lilly Backshell
- Malvika Kharbanda
- Megan Kent
- Naomi Jones
- Pailene Lim
- Rebecca Delconte
- Roberto Bonelli
- Rune Larsen
- Runyu Mao
- Sarah Garner
- Simona Seizova
- Sophie Collard
- Wayne Cawthorne
- Wil Lehmann
- Yanxiang Meng
- Zhong Yan Gan
- Miles Horton
- Alexandra Gurzau
- Student achievements
- Student association
- Learning Hub
- News
- Donate
- Online donation
- Ways to support
- Support outcomes
- Supporter stories
- Rotarians against breast cancer
- A partnership to improve treatments for cancer patients
- 20 years of cancer research support from the Helpman family
- A generous gift from a cancer survivor
- A generous vision for impactful medical research
- A gift to support excellence in Australian medical research
- An enduring friendship
- Anonymous donor helps bridge the 'valley of death'
- Philanthropy through the power of sisterhood
- Renewed support for HIV eradication project
- Searching for solutions to muscular dystrophy
- Supporting research into better treatments for colon cancer
- Taking a single cell focus with the DROP-seq
- WEHI.TV
Primary immunodeficiency

Our immune system normally prevents infection. In immunodeficiency, one or more components of the immune system are lacking. This puts people at risk of life-threatening infections.
Our research seeks to discover how immunodeficiencies occur, with the goals of improving diagnosis of immunodeficiencies and how they are treated.

Our immunodeficiency research
Our immunology researchers aim to understand how immunodeficiencies occur, and how they can be better treated. Our laboratory and clinical research efforts include:
- Defining how the immune system normally develops and functions, to understand what goes wrong in immunodeficiencies.
- Discovering the genetic and immune changes that cause common variable immunodeficiency, the most common inherited (primary) immunodeficiency in Australia and worldwide.
- Investigating HIV, a major cause of immunodeficiency worldwide.
What are immunodeficiencies?
Immunodeficiencies are a broad class of conditions where one or more components of the immune system are missing. A person with an immunodeficiency has trouble fighting infections. They may contract more illnesses than other people, and may become infected with microbes that do not normally cause disease in humans.
Primary and secondary immunodeficiency
When someone is born lacking a component of the immune system, it is termed ‘primary immunodeficiency’.
Secondary immunodeficiency describes immunodeficiencies arising as the result of another event such as HIV infection or taking immune suppressing medication.
The Immune Deficiencies Foundation Australia provides information and support for people with immunodeficiencies, their carers and relatives.
What causes primary immunodeficiency?
Many primary immunodeficiencies are caused by changes in the genes that contribute to immune cell development and function. This means they can be passed from parents to a child, or can occur frequently in an extended family.
What is common variable immunodeficiency?
Common variable immunodeficiency (CVID) is the most common primary immunodeficiency, both in Australia and worldwide. It is estimated that approximately one in 10,000 Australians have CVID.
People with CVID have problems making antibodies, which are important in fighting infections and building immune protection. Low levels of antibodies put people with CVID at risk of recurrent bacterial infections. These people are also unable to develop a normal immune response to vaccines.
Diagnosing CVID is difficult and requires exclusion of other primary immunodeficiencies. As symptoms of CVID can be quite different between people, many people with this condition are not diagnosed until they are adults.
What causes CVID?
CVID appears to be caused by faulty genes. However, it appears there are many different genes that can contribute to CVID. Only in a few cases have the gene changes causing CVID been identified. For most people, the underlying cause of CVID is not known.
Our research into CVID aims to find the underlying cause of CVID. To do this we need help from people with CVID, as well as people with another immune deficiency called X-linked agammaglobulinemia (XLA). Find out more about our study into the causes of CVID.
CVID and autoimmune disease
Around a quarter of people with CVID have autoimmune diseases. This suggests that the cause of CVID could be part of a broader problem with the control of the immune system, where appropriate immune responses to microbes are stifled, but harmful attacks on normal body tissues occur.
How is CVID treated?
Once diagnosed, the only treatment for CVID is to receive regular and lifelong treatment with antibodies (an important product of donated blood) from healthy donors. Even with this ‘antibody replacement therapy’ people with CVID frequently experience serious complications, including autoimmune disease. Antibody replacement therapy also cannot entirely prevent life-threating infections.
Researchers:
Super Content:
Catch up with this public talk discussing the latest research, discoveries and treatments for coeliac disease, lupus and primary immune deficiencies.
If you are aged between 18 and 80 and have been diagnosed with common variable immunodeficiency (CVID) or X-linked agammaglobulinemia (XLA), we invite you to contact our research team.
Frank Macfarlane Burnet was awarded the Nobel Prize in 1960 and is widely acknowledged as the founder of modern immunology. This animation was created to commemorate the 50th anniversary of Burnet's landmark discovery.
Our researchers have defined for the first time how the size of the immune response is controlled during infection, or in response to vaccination.