- About
- Strategic Plan
- Structure
- Governance
- Scientific divisions
- ACRF Chemical Biology
- ACRF Stem Cells and Cancer
- Bioinformatics
- Cancer and Haematology
- Cell Signalling and Cell Death
- Development and Cancer
- Immunology
- Infection and Immunity
- Inflammation
- Molecular Genetics of Cancer
- Molecular Immunology
- Molecular Medicine
- Population Health and Immunity
- Structural Biology
- Systems Biology and Personalised Medicine
- Laboratory operations
- Funding
- Annual reports
- Human research ethics
- Scientific integrity
- Institute life
- Career opportunities
- Business Development
- Partnering opportunities
- Opportunities in platform technologies
- A complete cure for HBV
- A stable efficacious Toxoplasma vaccine
- Activating SMCHD1 to treat FSHD
- Fut8 Sugar coating immuno oncology
- Intercepting inflammation with RIPK2 inhibitors
- Novel checkpoints NK cells emerge as key players in IO
- Precision epigenetics silencing SMCHD1 to treat Prader Willi Syndrome
- Rethinking CD52 a therapy for autoimmune disease
- Targeting plasmacytoid dendritic cells for systemic lupus erythematosus
- Treating Epstein-Barr virus associated malignancies
- Royalties distribution
- Start-up companies
- Partnering opportunities
- Collaborators
- Publications repository
- Awards
- Discoveries
- Centenary 2015
- History
- Contact us
- Research
- Diseases
- Research fields
- Bioinformatics
- Cancer biology
- Cell death
- Cell signalling
- Clinical translation
- Computational biology
- Drug discovery
- Epigenetics
- Flow cytometry
- Genomics
- Haematology
- Imaging
- Immunology
- Infection
- Inflammation
- Medicinal chemistry
- Personalised medicine
- Proteomics
- Stem cells
- Structural biology
- Systems biology
- Vaccine development
- People
- Anne-Laure Puaux
- Associate Professor Aaron Jex
- Associate Professor Alyssa Barry
- Associate Professor Andrew Webb
- Associate Professor Anne Voss
- Associate Professor Chris Tonkin
- Associate Professor Daniel Gray
- Associate Professor Edwin Hawkins
- Associate Professor Grant Dewson
- Associate Professor Isabelle Lucet
- Associate Professor James Murphy
- Associate Professor Jeanne Tie
- Associate Professor Jeff Babon
- Associate Professor Joan Heath
- Associate Professor Justin Boddey
- Associate Professor Marco Herold Marco Herold
- Associate Professor Marnie Blewitt
- Associate Professor Matthew Ritchie
- Associate Professor Mike Lawrence
- Associate Professor Nicholas Huntington
- Associate Professor Oliver Sieber
- Associate Professor Rachel Wong
- Associate Professor Sandra Nicholson
- Associate Professor Seth Masters
- Associate Professor Sumitra Ananda
- Associate Professor Tim Thomas
- Associate Professor Wai-Hong Tham
- Associate Professor Wei Shi
- Catherine Parker
- Dr Anna Coussens
- Dr Ashley Ng
- Dr Ben Tran
- Dr Bob Anderson
- Dr Brad Sleebs
- Dr David Komander
- Dr Diana Hansen
- Dr Drew Berry
- Dr Emma Josefsson
- Dr Ethan Goddard-Borger
- Dr Gary Pitt
- Dr Gwo Yaw Ho
- Dr Hui-Li Wong
- Dr Hélène Jousset Sabroux
- Dr Ian Majewski
- Dr Ian Street
- Dr Jacqui Gulbis
- Dr James Vince
- Dr Jason Tye-Din
- Dr Joanna Groom
- Dr John Wentworth
- Dr Julie Mercer
- Dr Kate Sutherland
- Dr Kelly Rogers
- Dr Ken Pang
- Dr Leanne Robinson
- Dr Leigh Coultas
- Dr Lucy Gately
- Dr Margaret Lee
- Dr Marie-Liesse Asselin-Labat
- Dr Mary Ann Anderson
- Dr Maryam Rashidi
- Dr Matthew Call
- Dr Melissa Call
- Dr Melissa Davis
- Dr Michael Low
- Dr Misty Jenkins
- Dr Peter Czabotar
- Dr Philippe Bouillet
- Dr Priscilla Auyeung
- Dr Rhys Allan
- Dr Ruth Kluck
- Dr Samar Ojaimi
- Dr Samir Taoudi
- Dr Sant-Rayn Pasricha
- Dr Shalin Naik
- Dr Sheau Wen Lok
- Dr Simon Chatfield
- Dr Stephen Wilcox
- Dr Tracy Putoczki
- Guillaume Lessene
- Helene Martin
- Keely Bumsted O'Brien
- Mr Joel Chibert
- Mr Simon Monard
- Mr Stan Balbata
- Mr Steve Droste
- Ms Carolyn MacDonald
- Ms Samantha Ludolf
- Ms Wendy Hertan
- Professor Alan Cowman
- Professor Andreas Strasser
- Professor Andrew Lew
- Professor Andrew Roberts
- Professor Clare Scott
- Professor David Huang
- Professor David Vaux
- Professor Doug Hilton
- Professor Gabrielle Belz
- Professor Geoff Lindeman
- Professor Gordon Smyth
- Professor Ian Wicks
- Professor Ivo Mueller
- Professor Jane Visvader
- Professor Jerry Adams
- Professor John Silke
- Professor Ken Shortman
- Professor Leonard C Harrison
- Professor Li Wu
- Professor Lynn Corcoran
- Professor Marc Pellegrini
- Professor Melanie Bahlo
- Professor Nicos Nicola
- Professor Peter Colman
- Professor Peter Gibbs
- Professor Phil Hodgkin
- Professor Stephen Nutt
- Professor Suzanne Cory
- Professor Terry Speed
- Professor Tony Burgess
- Professor Tony Papenfuss
- Professor Warren Alexander
- Education
- PhD
- Honours
- Masters
- Undergraduate
- Student research projects
- 3D and 4D imaging of thymic T cell differentiation
- Activating https://www.wehi.edu.au/node/add/individual-student-research-page#Parkin to treat Parkinson’s disease
- Activation, regulation, and biological roles of E3 ubiquitin ligases
- Bioinformatics methods for detecting and making sense of somatic genomic rearrangements
- Characterising regulatory T cells in coeliac disease
- Computational melanoma genomics
- Deep profiling of blood cancers during targeted therapy
- Defining the role of necroptosis in platelet production and function
- Determining the migration signals leading to protective immune responses
- Developing mucolytics to treat chronic respiratory diseases
- Developing new tools to visualise necroptotic cell death
- Development of live-cell, automated microscopy techniques for studying malaria
- Development of tools to inform malaria vaccine design
- Discovering new genetic causes of primary antibody deficiencies
- Discovery of novel drug combinations for the treatment of bowel cancer
- Dissecting the induction and integration of T cell migration cues
- Drug targets and compounds that block growth of malaria parasites
- Effects of nutrition on immunity and infection in Asia and Africa
- Eosinophil and neutrophil heterogeneity
- Eosinophil maturation
- Epigenetic regulation of systemic iron homeostasis
- Functional differences between young and old platelets
- Generation of cytokine antagonists
- Genetic dissection of mechanisms of Plasmodium invasion
- Genomic characterisation of epigenetic regulators involved in X inactivation
- High resolution 3-dimensional imaging to characterise metastatic cancers
- High-resolution imaging of host cell invasion by the malaria parasite
- Home renovations: understanding how Toxoplasma redecorates its host cell
- How the epigenetic regulator SMCHD1 works and how to target it to treat disease
- Human monoclonal antibodies against malaria infection
- Identification of malaria parasite entry receptors
- Identification of new therapeutic opportunities for pancreatic cancer
- Identifying disease-causing haplotypes with hidden Markov models
- Interleukin-11 in gastrointestinal bacterial infections
- Investigating mechanisms of cell death and survival using zebrafish
- Investigating new paths to selective modulation of potassium channels
- Let me in! How Toxoplasma invades human cells
- Long-read sequencing for transcriptome and epigenome analysis
- Macro-evolution in cancer
- Mapping DNA repair networks in cancer
- Mapping how multiple malaria episodes are related
- Modelling gene regulatory systems
- Modulation of immune responses by immunosuppressive chemokines
- Molecular basis for inherited Parkinson’s disease mechanism of PINK1
- Mucus at the molecular level
- Novel cell death and inflammatory modulators in lupus
- Plasmodium vivax host-parasite interactions: impact on immunity
- Predicting drug response in cancer
- Programming T cells to defend against infections
- Reconstructing the immune response: from molecules to cells to systems
- Regulation of cytokine signalling
- Screening for regulators of jumping genes
- Target identification of potent antimalarial agents
- Targeting the immune system in cancer
- The role of interleukin-11 in acute myeloid leukaemia
- Transmembrane control of type I cytokine receptor activation
- Uncovering the roles of long non-coding RNAs in human bowel cancer
- Understanding retinal eye diseases with retinal transcriptomic data analysis
- Understanding the role of stromal cells in pancreatic cancer growth
- Unravelling the tumour suppressor network in models of lung cancer
- Utilising pre-clinical models to discover novel therapies for tuberculosis
- Zombieland: evolution of a dead enzyme that kills cells by necroptosis
- School resources
- Frequently asked questions
- Student profiles
- Abebe Fola
- Casey Ah-Cann
- Catia Pierotti
- Charlotte Slade
- Daniel Cameron
- Emma Nolan
- Jason Brouwer
- Joy Liu
- Lucille Rankin
- Rebecca Delconte
- Roberto Bonelli
- Rune Larsen
- Sarah Garner
- Simona Seizova
- Michael Low
- Sofonias Tessema
- Santini Subramaniam
- Miles Horton
- Alexandra Gurzau
- Tamara Marcus
- Nicholas Chandler
- Student achievements
- Student association
- News
- Donate
- Online donation
- Ways to support
- Support outcomes
- Supporter stories
- Rotarians against breast cancer
- A partnership to improve treatments for cancer patients
- 20 years of cancer research support from the Helpman family
- A generous gift from a cancer survivor
- A gift to support excellence in Australian medical research
- An enduring friendship
- Anonymous donor helps bridge the 'valley of death'
- Renewed support for HIV eradication project
- Searching for solutions to muscular dystrophy
- Supporting research into better treatments for colon cancer
- Taking a single cell focus with the DROP-seq
- WEHI.TV
Hepatitis B

One-third of the world’s population has been infected with the hepatitis B virus. Most people experience only a short, mild disease, but a lifelong ‘chronic’ infection occurs in some people.
Hepatitis B puts people at risk of liver disease and cancer. Our hepatitis B research focuses on understanding how chronic infections occur, and how they can be cured.
Our hepatitis B research
Our researchers are investigating why the immune system cannot eliminate chronic hepatitis B infections. This is leading to new strategies to cure hepatitis B by stimulating immune clearance of the virus.
What is hepatitis B?
Hepatitis B is a liver disease caused by infection with the hepatitis B virus. In the short term this causes liver inflammation, which can cause illness and is occasionally fatal.
In most people, this ‘acute’ infection can be controlled within several months. This means the virus is no longer reproducing within the liver, and the person is no longer infectious.
In some people, the hepatitis B virus continues to grow within their liver cells. This is called a chronic infection. It can cause cirrhosis, a scarring of the liver that impairs its function.
Both acute and chronic hepatitis B infections put people at risk of developing liver cancer. The presence of the viral genome within liver cells can increase the chances that the liver cells develop genetic changes, allowing cancer development.
People who are at greater risk of developing chronic hepatitis B after initial infection include:
One-third of the world’s population has been infected with hepatitis B virus. The virus is carried as a chronic infection by 350 million people, including more than 200,000 Australians. Chronic hepatitis B infection is more prevalent in Aboriginal and Torres Strait Islander Australians than the wider population.
More than 700,000 people die each year from the consequences of hepatitis B infection. The prevalence of hepatitis B virus globally contributes to liver cancer being one of the leading causes of cancer-related deaths. In Australia, the number of deaths from liver cancer is increasing faster than deaths from any other cancer.
How is hepatitis B spread?
Hepatitis B virus is spread between people through infected blood and bodily fluids, such as semen and saliva. When hepatitis B virus enters the body, it infects liver cells. Here the virus can replicate, and release new viruses into the blood stream.
How can hepatitis B be prevented?
There is a vaccine that can protect against hepatitis B virus infection. It triggers the production of antibodies to hepatitis B virus. This prevents newly acquired virus from surviving within the body.
In Australia, hepatitis vaccination is recommended for:
- Newborns.
- People working in close contact with other people, such as healthcare and childcare workers.
- People living with someone infected with hepatitis B
- People with weakened immune systems, such as people with HIV.
How is hepatitis B treated?
Unvaccinated people who may have been exposed to hepatitis B virus can be treated with antibodies to hepatitis B. These antibodies bind to hepatitis B virus in the body, preventing them from infecting cells. The antibodies are produced from the donated blood of people who have been vaccinated against hepatitis B.
Acute hepatitis B is usually a mild illness that does not require treatment.
People who have chronic hepatitis B infection can be treated with antiviral medications. These do not cure the disease. Instead they reduce the growth of the virus, and reduce liver damage. Our researchers aim to discover how the immune system can be triggered to cure chronic hepatitis B infection.
Serious liver damage caused by hepatitis B is sometimes treated by liver transplantation.
Researchers:
Super Content:
Our scientists have found a potential cure for hepatitis B virus infections, with a promising new treatment proving 100 per cent successful in preclinical models.
Our research has led to a potential new treatment that kills cells infected with hepatitis B.
A newly discovered gene could hold the key to treating and potentially controlling HIV, hepatitis and tuberculosis.
Dr Greg Ebert has won the Bupa Health Foundation Emerging Health Researcher Award 2014
Sylvia and Charles Viertel Fellowship to support Professor Marc Pellegrini's research into HIV, tuberculosis and hepatitis B